

softGlue Run-time programmable digital electronics

Tim Mooney 3/3/2015

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Overview

- SoftGlue enables beamline users and staff to construct simple digital electronic circuits, and connect those circuits to field wiring, by writing to EPICS process variables (PVs).
- SoftGlue also provides safe (throttled) user control over how hardware interrupts are generated by field I/O signals, and dispatched to cause EPICS processing.
- SoftGlue circuits can be autosaved and restored, saved as text files, emailed to another user, and managed by configMenu.
- SoftGlue does this by loading an IndustryPack FPGA-based digital I/O module with a predefined collection of circuit elements (logic gates, counters, flip-flops, etc.), whose inputs and outputs are connected to switches controlled by EPICS PVs.

MEDM display

EPICS

How it works, conceptually

Circuit-element inputs

option	example	result	comment
empty		1	
number	1 0 1! 0! 0.499	1 0 Positive-going pulse Negative-going pulse 0	~6 μs ~6 μs
name	mySignal	Connected to all other inputs and output named "mySignal"	

Additional circuit elements

 Quadrature decoder read encoder

Up/Dn Counter
 count output signals from
 quadrature decoder

Shift register
 bit stream I/O

Other circuit elements are possible. See Kurt Goetze.

Example applications

- With no user programming, softGlue is a digital I/O module.
- Trigger a detector after every N steps of a motor.
- Trigger a detector after every N[i] steps of an encoder.
- Gate a detector off during a motor's accel/decel time.
- Trigger a detector 23.7 ms after a shutter.
- Conditionally execute an EPICS record on the rising edge of an external signal.
- Implement an extraordinarily smart oscilloscope trigger.
- Cause an EPICS database to wait for 0.7 ms.
- Count encoder pulses.
- Convert encoder pulses to up/down pulses, for use with a multichannel scaler.
- Send/receive a bit stream from external hardware.
- Latch the value of an external signal.

Documented example circuits

- https://subversion.xray.aps.anl.gov/admin_bcdaext/softGlue_examples
 - Programmable pulse train
 - Gated scaler
 - Pulse burst
 - Delay generator
 - Motor accel/decel pulse gate
 - Debouncer
 - TTL Pulse Stretcher and Delay

Field I/O

- Connected just as are circuit elements
- Interrupt can drive EPICS record on falling edge, rising edge, etc.

EPICS

- A: 100-Ohm series termination to ribbon cables
- B: 50-Ohm line driver for RG58/RG174 coaxial cables

A B

